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Abstract. We suggest a procedure for the construction of BaxterQ-operators for the Toda chain.
Apart from the one-parametric family ofQ-operators, considered in our recent paper (Pronko 2000
Commun. Math. Phys. to appear) we also give the method of construction of two basicQ-operators
and the derivation of the functional relations for these operators. Also we have found the relation
of the basicQ-operators with Bloch solutions of the quantum linear problem.

1. Introduction

Long ago, in his famous papers [1], Baxter introduced the object that is now known as the
Q-operator. This operator was used initially for the solution of the eigenvalue problem of
the XYZ-spin chain, where the usual Bethe ansatz fails. Recently, this operator was discussed
intensively in a series of papers [2] in the connection with continuous quantum field theory. In
[3] the relation between Q-operator and quantum Bäklund transformations was pointed out.
In [4] we suggested the construction of a one-parametric family of Q-operators for the most
difficult case of the isotropic Heisenberg spin chain. (In spite of the obvious simplicity of this
model, the original Baxter construction fails here.)

The existence of the one-parametric family of Q-operators implies the existence of two
basic solutions to the Baxter equation, whose linear combinations (with operator coefficients)
form the one-parametric family.

In the present paper we extend the investigation started in [4] to the periodic Toda chain,
the other model with a rational R-matrix. It turns out that apart from the construction of the
one-parametric family of Q-operators (section 2), in the case of the Toda chain it is possible
to also build two basic Q-operators separately (section 3). These basic operators satisfy the
set of functional Wronskian relations (section 5), first established for a certain field-theoretical
model in [2]. On the one hand, the Wronskian relations imply the linear independence of the
basic operators, on the other hand, they are the origin for numerous fusion relations for the
transfer matrix of the model.

In our approach we construct the basic Q-operators as the trace of the monodromy of
certain M(1,2)

n (x) operators (section 3). It turns out that these operators also permit us to
construct the quantum Bloch functions, the basis of the solutions of the quantum linear problem,
which are the eigenvectors of the monodromy matrix (section 6).

The defining relation of the Q-operator (Baxter equation) for the models with rational
R-matrix looks as follows:

t (x)Q(x) = a(x)Q(x + i) + b(x)Q(x − i) (1)
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where t (x) is the corresponding transfer matrix and a(x) and b(x) are the c-number functions
which enter into factorization of the quantum determinant of t (x). In the case of the Toda chain
the quantum determinant is unity, therefore we can choose the normalization a(x) = b(x) = 1,
which we shall use below.

2. Toda chain

The periodic Toda chain is the quantum system described by the Hamiltonian

H =
N∑
i=1

(
p2
i /2 + exp(qi+1 − qi)

)
(2)

where the canonical variables pi, qi satisfy commutation relations

[pi, qj ] = iδij (3)

and periodic boundary conditions

pi+N = pi
qi+N = qi.

(4)

Following Sklyanin [5] we introduce the Lax operator in two-dimensional auxiliary space as
follows:

Ln(x) =
(
x − pn eqn

−e−qn 0

)
(5)

where x is the spectral parameter. The fundamental commutation relations for the Lax operator
could be written in R-matrix form:

R12(x − y)L1
n(x)L

2
n(y) = L2

n(y)L
1
n(x)R12(x − y) (6)

where the indices 1, 2 indicate different auxiliary spaces and the R-matrix is given by

R12(x) = x + iP12 (7)

where P is the operator of permutation of the auxiliary spaces. The same intertwining relation
also holds true and for the monodromy matrix corresponding to the L-operator (5):

Tij (x) =
(
N∏
1

Ln(x)

)
ij

(8)

where the multipliers of the product are ordered from right to left.
TheQ(x)-operator we are going to construct will be given as the trace of the monodromy

Q̂(x) of appropriate operators Mn(x), which acts in the nth quantum space and its auxiliary
space, which we will choose to be the representation space � of the algebra

[ρi, ρ
+
j ] = δij i, j = 1, 2. (9)

The operator Q̂(x) will be given by the ordered product

Q̂(x) =
N∏
n=1

Mn(x). (10)
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Furthermore, we shall need to consider the product (Ln(x))ijMn(x), which acts in the
auxiliary space � × C2 (� for Mn(x) and C2 is the two-dimensional auxiliary space for
Ln(x)). In this space it is convenient to consider a pair of projectors �±

ij :

�+
ij = (ρ+ρ + 1)−1ρiρ

+
j = ρiρ+

j (ρ
+ρ + 1)−1

�−
ij = (ρ+ρ + 1)−1εilρ

+
l εjmρm = εilρ+

l εjmρm(ρ
+ρ + 1)−1

(11)

where

ρ+ρ = ρ+
i ρi

εij = −εji ε12 = 1.
(12)

These projectors formally satisfy the following relations:

�±
ik�

±
kj = �±

ij

�+
ik�

−
kj = 0

�+
ij +�−

ij = δij .
(13)

Rigorously speaking, the right-hand side of the first equation (13) in the Fock
representation has an extra term, proportional to the projector on the vacuum state, but, as
we shall see below, this term is irrelevant in the present discussion.

In order to define the Q-operator which satisfies the Baxter equation we shall exploit
Baxter’s idea [1], which we reformulate as follows: the Mn(x)-operator should satisfies the
relation

�−
ij (Ln(x))jlMn(x)�

+
lk = 0. (14)

If this condition is fulfilled, then

(Ln(x))ijMn(x) = �+
ik (Mn(x))kl Mn(x)�

+
lj

+�−
ik (L(x)n)kl Mn(x)�

−
lj +�+

ik(Ln(x))klMn(x)�
−
lj . (15)

In other words, condition (14) guarantees that the right-hand side of (15), in the sense of
projectors �± has the triangle form and this form will be conserved for products over n due
to orthogonality of the projectors.

From (14) we obtain

εjmρm(Ln(x))jkMn(x)ρk = 0. (16)

To satisfy this equation it is sufficient if

Mn(x)ρk = (L−1
n (x))klρlAn(x) (17)

or

εjmρm(Ln(x))jkMn(x) = Bn(x)εklρl (18)

where An(x) and Bn(x) are some operators which we shall now find. Note that the operator
L−1
n (x) is given by

L−1
n (x) =

(
0 −eqn

e−qn x − i − pn

)
(19)

Equation (18) could be rewritten in the following form:(
L−1
n (x + i)

)
jk
ρkMn(x) = Bn(x)ρj . (20)
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Comparing equations (17) and (20) we conclude that they both are satisfied provided

An(x) = Mn(x − i)

Bn(x) = Mn(x + i).
(21)

In such a way we obtain the following equation for theM(x)-operator:(
L−1
n (x + i)

)
jk
ρkMn(x) = Mn(x + i)ρj . (22)

If the operatorMn(x) satisfies this equation, the productLn(x)Mn(x) takes the following form:

(Ln(x))ijMn(x) = ρiMn(x − i)ρ+
j (ρ

+ρ + 1)−1

+(ρ+ρ + 1)−1εilρ
+
l Mn(x + i)εjmρm +�+

ik(Ln(x))klMn(x)�
−
lj . (23)

We do not detail the last term in (23) because, due to the triangle structure of its right-hand
side this term will not enter into the trace of Q̂(x).

Now our task is to solve the equation for the Mn(x)-operator. A detailed investigation
of equation (22) shows that the usual Fock representation for (9) is not fit for our purpose,
therefore we shall use a less restrictive holomorphic representation.

Let the operator ρ+
i be the operator of multiplication by αi , while the operator ρi is the

operator of differentiation with respect to αi :

ρ+
i ψ(α) = αiψ(α)
ρiψ(α) = ∂

∂α
ψ(α).

(24)

The operators ρ+
i and ρi are canonically conjugated for the scalar product

(ψ, φ) =
∫ ∏

i=1,2 dαi dᾱi
(2π i)2

e−αᾱψ̄(α)φ(α). (25)

The action of an operator in the holomorphic representation is defined by its kernel:

(Kψ) (α) =
∫

d2µ(β)K(α, β̄)ψ(β) (26)

where we have denoted

d2µ(β) =
∏
i=1,2 dβi dβ̄i
(2π i)2

. (27)

Now we are ready to make the following statement.

Statement. The kernelMn(x, α, β̄) of the operatorMn(x) in holomorphic representation has
the following form:

Mn(x, α, β̄) = mn(x) (αβ̄)2l+ix

�(2l + ix + 1)
(28)

where l is an arbitrary parameter and the operator mn(x) is given by

mn(x) = exp
[
π/2(ρ+

1ρ2eqn − ρ+
2ρ1e−qn] (1 + iρ+

2ρ1e−qn)i(pn−x)+ρ+
1 ρ1

= (
1 − iρ+

1ρ2eqn
)i(pn−x)+ρ+

1 ρ1 exp
[
π/2(ρ+

1ρ2eqn − ρ+
2ρ1e−qn]. (29)

In (28) the operator mn(x) acts on the argument α of the function (αβ̄)2l+ix according to (24).
The proof of the statement is straightforward by a direct substitution of (28) into equation (22).
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This calculation also gives us as a by-product the meaning of the operatormn(x). Apparently,
this operator commutes with the operator

l̂ = 1
2 (ρ

+
1ρ1 + ρ+

2ρ2). (30)

If we fix the subspace of � corresponding to the definite eigenvalue l of the operator l̂, then
the operator mn(x − i(l + 1

2 )) becomes the Lax operator of the Toda chain with auxiliary
space, corresponding to spin l. In particular, the operator (5) corresponds to l = 1

2 . Generally
speaking,mn(x− i(l + 1

2 )) represents the Lax operator of the Toda chain in the auxiliary space
�. This statement could be proved by intertwining of the operator (5) with mn(x − i(l + 1

2 )).
Now, taking the ordered product of the Mn(x) operators we shall obtain the operator

Q̂(x, l) whose kernel is given by

Q̂(x, l, α, β̄) =
∫ N−1∏

i=1

d2µ(γi)MN(x, l, α, γ̄N−1)MN−1(x, l, γN−1, γ̄N−2)

×M2(x, l, γ2, γ̄1)M1(x, l, γ1, β̄). (31)

Due to the triangle (in the sense of projectors �±) structure of the right-hand side of (23) we
obtain the following rule of multiplication of the monodromy matrix T (x) on the operator
Q̂(x):

(T (x))ij Q̂(x, l, α, β̄) = (x + 1
2 i)NρiQ̂(x − i, l, α, β̄)ρ+

j (ρ
+ρ + 1)−1

×(x − 1
2 i)N(ρ+ρ + 1)−1εimρ

+
mQ̂(x + i, l, α, β̄)εjkρk +�+

im

(· · ·)
mk
�−
kj (32)

where we omitted the explicit expression of the last term for an obvious reason.
To proceed further we need to remind the reader of the definition of the trace of an operator

in the holomorphic representation. If the operator is given by its kernel F(α, β̄) then (see, e.g.,
[6])

Tr F =
∫

d2µ(α)F (α, ᾱ) (33)

where the measure was defined in (27). Now we can perform the trace operation for both sides
of (32) over the holomorphic variables and over i, j indices, corresponding to the auxiliary
two-dimensional space of T (x). The result is the desired Baxter equation:

t (x)Q(x, l) = Q(x − i, l) +Q(x + i, l) (34)

where, according to (33)

Q(x, l) =
∫

d2µ(α)Q̂(x, l, α, ᾱ). (35)

Note, that the trace of Q̂ exists due to the exponential factor in the holomorphic measure
(27) and has a cyclic property, therefore Q(x, l) is invariant under cyclic permutation of the
quantum variables. Acting as above we can also consider right multiplicationMn(x)Ln(x) to
obtain

Q(x, l)t (x) = Q(x − i, l) +Q(x + i, l). (36)

We shall not consider here the derivations of the intertwining relations for Q̂(x, l) for different
values of x and l and for Q̂(x, l) and Tij (y). This may be done in the same way as in [4] and
these relations imply the following commutation relations:

[Q(x, l),Q(y,m)] = 0

[t (x),Q(y, l)] = 0.
(37)
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In such a way we have constructed the family of solutions of the Baxter equation which are
parametrized by the parameter l. We can prove that this family may be considered as a linear
combinations of two basic solutions with operator coefficients. Here the following question
arises. Is it possible to construct these basic operators separately. The answer is positive and
now we shall show how our procedure should be modified in this case.

3. Basic Q-operators for the Toda chain

As above, we shall look for the Q-operators in the form of the monodromy of appropriate
M(i)
n (x)-operators, which we now supply with the index i = 1, 2 and which act in nth quantum

space. The auxiliary space � will now be the representation space of one Heisenberg algebra,
instead of (9):

[ρ, ρ+] = 1. (38)

The product (Ln(x))ijM(i)
n (x) is an operator in nth quantum space and in auxiliary space which

is the tensor product � × C2. In this auxiliary space we shall introduce new projectors:

�+
ij =

(
1
ρ

)
1

ρ+ρ + 1
(1, ρ+)

�−
ij =

( −ρ+

1

)
1

ρ+ρ + 2
(−ρ, 1)

(39)

The defining equations for the operatorsM(i)
n (the analogues of equation (14)) are

�−
ik(Ln(x))klM

(1)
n (x)�

+
lj = 0

�+
ik(Ln(x))klM

(2)
n (x)�

−
lj = 0.

(40)

The solutions of these equations we again will present as the kernels of the corresponding
operators in holomorphic representation of the algebra (38):

M(1)
n (x, α, β̄) = exp(−iβ̄eqn)

e−πx/2

�(−i(x − pn) + 1)
exp(iαe−qn)

M(2)
n (x, α, β̄) = exp(−iαe−qn)e−πx/2e(x−pn)�(−i(x − pn)) exp(iβ̄eqn).

(41)

For right multiplication byLn(x) these operators automatically satisfy the following equations:

�+
ikM

(1)
n (x)(Ln(x))kl�

−
lj = 0

�−
ikM

(2)
n (x)(Ln(x))kl�

+
lj = 0.

(42)

The full multiplication rules for the operators Mi
n(x) and Ln(x) have the following form for

left multiplication:

(Ln(x))ijM
(1)
n (x) =

(
1
ρ

)
i

M(1)
n (x − i)

1

ρ+ρ + 1
(1, ρ+)j

+

( −ρ+

1

)
i

1

ρ+ρ + 2
M(1)
n (x + i)(−ρ, 1)j +�+

ik(Ln(x))klM
(1)
n (x)�

−
lj

(Ln(x))ijM
(2)
n (x) =

(
1
ρ

)
i

1

ρ+ρ + 1
M(2)
n (x + i)(1, ρ+)j (43)

+

( −ρ+

1

)
i

M(2)
n (x − i)

1

ρ+ρ + 2
(−ρ, 1)j +�−

ik (Ln(x))kl M
(2)
n (x)�

+
lj
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and for right multiplication:

M(1)
n (x)(Ln(x))ij =

(
1
ρ

)
i

1

ρ+ρ + 1
M(1)
n (x − i)(1, ρ+)j

+

( −ρ+

1

)
i

M(1)
n (x + i)

1

ρ+ρ + 2
(−ρ, 1)j +�−

ik(Ln(x))klM
(1)
n (x)�

+
lj (44)

M(2)
n (x)(Ln(x))ij =

(
1
ρ

)
i

M(2)
n (x + i)

1

ρ+ρ + 1
(1, ρ+)j

+

( −ρ+

1

)
i

1

ρ+ρ + 2
M(2)
n (x − i)(−ρ, 1)j +�+

ik(Ln(x))klM
(2)
n (x)�

−
lj . (45)

These relations guarantee that the traces of the monodromies, corresponding to both
operatorsM(i)

n (x) satisfy the Baxter equations:

t (x)Q(i)(x) = Q(i)(x + i) +Q(i)(x − i)

Q(i)(x)t (x) = Q(i)(x + i) +Q(i)(x − i).
(46)

We shall conclude this section with the calculation of the operatorsQi(x) for the simplest
case of one quantum degree of freedom. In this case from (33) we easily obtain

Q(1)(x) =
∫

dα dᾱ

2π i
e−αᾱM1(x, α, ᾱ) =

∑
n=0

e−πx/2

n!
e−qn 1

�(−i(x − p) + 1)
eqn

=
∑
n=0

e−πx/2

n!�(−i(x − p) + n + 1)
= e−πx/2I−i(x−p)(2) (47)

where Iν(x) is the modified Bessel function. The analogous calculations for the second Q-
operator gives

Q(2)(x) = −e−πx/2 πeπ(x−p)

sin π i(x − p)
∑
n=0

1

n!�(i(x − p) + n + 1)

= − e−πx/2 πeπ(x−p)

sin π i(x − p)Ii(x−p)(2). (48)

These two expressions could be compared with the results of [7].

4. Intertwining relations

In this section we shall consider the set of intertwining relations among the Ln(x) andM(i)
n (x)

operators, which will imply the mutual commutativity of the transfer matrix andQ(i)(x). Let
us start with the simplest relation

R
(i)
kl (x − y)(Ln(x))lmM(i)

n (y) = M(i)
n (y)(Ln(x))klR

(i)
lm(x − y). (49)

From equation (40) it follows that for x = y the R(i)-matrices become the corresponding
projectors, �− for i = 1 and �+ for i = 2. Making use of these properties we easily obtain:

R
(1)
kl (x − y) =

(
x − y + iρ+ρ −iρ+

−iρ i

)
(50)

R
(2)
kl (x − y) =

(
i iρ+

iρ x − y + i + iρ+ρ

)
. (51)
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The next relation that we shall consider is

M(1)
n (x, ρ)M

(2)
n (y, τ )R

12(x − y) = R12(x − y)M(2)
n (y, τ )M

(1)
n (x, ρ) (52)

where both M-operators act in different auxiliary spaces �(i) and the mutual quantum space.
TheR-matrix acts in the tensor product of auxiliary spaces�(1)×�(2). In (52) we have denoted
the operators which act in the auxiliary space �(1) as ρ, ρ+ and operators in �(2) as τ, τ +. From
explicit expressions for theM-operators (41) it follows that

(ρ + τ)M(1)
n (x, ρ)M

(2)
n (y, τ ) = 0

M(2)
n (y, τ )M

(1)
n (x, ρ)(ρ

+ + τ +) = 0.
(53)

These relations mean that the products of theM-operators are triangle operators in �(1)×�(2)
and, as a result the R-matrix satisfies the following equations:

(ρ + τ)R12(x) = 0

R12(x)(ρ+ + τ +) = 0.
(54)

The corollary of (54) is that the kernel of the R-matrix in the holomorphic representation
depends on only one variable:

R12(x, α, β̄; γ, δ̄) = f (x, (α − γ )(β̄ − δ̄)) (55)

where the variables α, β̄ refer to the operators ρ, ρ+ and variables γ, δ̄ to the operators
τ, τ +. Taking (55) into account we can write the intertwining relation (52) in a holomorphic
representation:∫

dµ(β ′) dµ(δ′)M(1)
n (x, α, β̄

′)M(2)
n (y, γ, δ̄

′)f (x − y, (β ′ − δ′)(β̄ − δ̄))

=
∫

dµ(α′) dµ(γ ′) f (x − y, (α − γ )(ᾱ′ − γ̄ ′))M(2)
n (y, γ

′, δ̄)M(1)
n (x, α

′, β̄)

(56)

where

dµ(α) = dα dᾱ

2π i
e−αᾱ. (57)

To simplify this equation let us introduce the new external variables:

ξ1 = 1√
2
(α + γ ) ξ ′

1 = 1√
2
(β + δ)

ξ2 = 1√
2
(α − γ ) ξ ′

2 = 1√
2
(β − δ)

(58)

and new integration variables for left-hand side (right-hand side) integral:

ξ ′′
1 = 1√

2
(β ′ + δ′)

(
ξ ′′

1 = 1√
2
(α′ + γ ′)

)

ξ ′′
2 = 1√

2
(β ′ − δ′)

(
ξ ′′

2 = 1√
2
(α′ − γ ′)

)
.

(59)

Apparently, due to the structure of M(i)-operators and R-matrix, both sides of (56) depend
only on the variables ξ2, ξ̄

′
2 and integration over ξ ′′

1 becomes trivial, resulting in elimination of
these variables in the integrands. Furthermore, representing the function f (x, 2ξ ′′ξ̄ ′) as

f (x, 2ξ ′′ξ̄ ′) =
∑
n=0

Cn(x)
(2ξ ′′ξ̄ ′)n

n!
(60)
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we can perform the integration over ξ ′′
2 and, comparing similar terms in both sides of (56),

conclude that

Cn(x) = 1

�(−ix + n + 1)
. (61)

Therefore, the R-matrix in (52) has the following form in the holomorphic representation:

R12(x, α, β̄; γ, δ̄) =
∑
n=0

(
(α − γ )(β̄ − δ̄))n
n!�(−ix + n + 1)

. (62)

As the operator in the space �(1) × �(2), the R-matrix (62) is pathological because its kernel
depends only on part of the holomorphic variables. In other words, it contains the projector π
on the subspace of �(1) × �(2) which is formed by the functions depending on the difference
of variables. This property may be an obstacle in the derivation of the commutativity of
Q-operators from the intertwining relation (52). The situation is saved due to the same
pathological nature of the product of theM-operators. Indeed, let us consider the product

Q(1)(x)Q(2)(y) = Tr1

N∏
k=1

M
(1)
k (x)Tr2

N∏
k=1

M
(2)
k (y) = Tr1,2

N∏
k=1

M
(1)
k (x)M

(2)
k (y) (63)

where the indices 1, 2 mark the corresponding auxiliary space. Due to the property (53) we
can supply each term M

(1)
k (x)M

(2)
k (y) in the last product with the projector π . The same

also holds true for the product of Q-operators taken in the inverse order. In such a way
for the commutativity of Q-operators we need to consider only the intertwining relations of
M-operators projected onto the space π

(
�(1) × �(2)), where our R-matrix is well defined.

Next we shall consider the intertwining relation for the M(1)-operators with different
values of the spectral parameter:

R(11)(x − y)M(1)(x, ρ)M(1)(y, τ ) = M(1)(y, τ )M(1)(x, ρ)R(11)(x − y). (64)

As above, the R-matrix in (64) acts in the space �(1) × �(2). From an explicit expression for
M(1)-operator (41) we obtain

ρM(1)(x, ρ) = M(1)(x, ρ)ie−q − ieqM(1)(x, ρ) = M(1)(x, ρ)ρ+. (65)

These properties of theM(1)-operator imply the following conditions on the R-matrix:

τ +R(11)(x) = R(11)(x)ρ+ ρR(11)(x) = R(11)(x)τ (66)

which could be satisfied if R(11)(x) has the following form:

R(11)(x) = Pρτg(x, ρ+τ) (67)

where Pρτ denotes the operator of permutation of ρτ variables. Substituting (67) into
relation (64) we obtain the equation for the function g:

g(x − y, ρ+τ)M(1)(x, ρ)M(1)(y, τ ) = M(1)(y, τ )M(1)(x, ρ)g(x − y, ρ+τ). (68)

Making use of the explicit form of the M(1)-operator and the formal power-series expansion
for the function g with respect to its second argument we can solve this equation and find the
function g:

g(x, ρ+τ) = (1 + ρ+τ)−ix (69)

and therefore

R(11)(x) = Pρτ (1 + ρ+τ)−ix. (70)
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As this R-matrix intertwines two similar objects, it should satisfy the Yang–Baxter equation
(and it really does), but we shall not investigate this issue further.

The last relation which we need to discuss is the intertwining of twoM(2)-operators:

R(22)(x − y)M(2)(x, ρ)M(2)(y, τ ) = M(2)(y, τ )M(2)(x, ρ)R(22)(x − y). (71)

TheM(2)-operators also satisfy the relations analogous to (65):

ρM(2)(x, ρ) = −ie−qM(2)(x, ρ) M(2)(x, ρ)ieq = M(2)(x, ρ)ρ+ (72)

from where we obtain the analogue of (66):

τ +R(22)(x) = R(22)(x)ρ+ ρ+R(22)(x) = R(22)(x)τ + (73)

and therefore R(22) has the following form:

R(22)(x) = Pρτh(x, τ +ρ). (74)

Furthermore, acting as above we find that the unknown function h does coincide with the
function g, resulting in the following R(22)-matrix:

R(22)(x) = Pρτ (1 + τ +ρ)−ix. (75)

Now we have completed the derivation of all the needed intertwining relations. The
main corollary of these relations is the mutual commutativity of the transfer matrix and both
Q-operators:

[t (x),Q(i)(y)] = 0 [Q(i)(x),Q(j)(y)] = 0 i(j) = 1, 2. (76)

5. Wronskian-type functional relations

It was first pointed out in [2] that the Baxter equation (1) which defines theQ-operator could be
viewed as the finite-difference analogue of the second-order differential equation which admits
two independent solutions. The linear independence of the solutions could be established
through the calculation of the Wronskian corresponding to the equation. In the previous
section we have constructed two solutions of the Baxter equation and now our task is to prove
its linear independence, i.e. to derive the finite-difference analogue of the Wronskian. To solve
this problem let us consider in detail the representation of the product (63) of two different
Q-operators. In the notation of the previous section the product of two M-operators which
enters into the right-hand side of (63) has the following form:

M
(12)
k (x, y, α, β̄, γ, δ̄) = M(1)

k (x, α, β̄)M
(2)
k (y, γ, δ̄)

= e−π(x+y)/2e−iβ̄eqk 1

�(−i(x − pk) + 1)
ei(α−γ )e−qk eπ(y−pk)�(−i(y − pk))eiδ̄eqk .

(77)

Changing the holomorphic variables according to (58) we obtain

M
(12)
k (x, y, ξ1, ξ2, ξ̄

′
1, ξ̄

′
2) = e−π(x+y)/2e−i/

√
2(ξ̄ ′

1+ξ̄ ′
2)e

qk

× 1

�(−i(x − pk) + 1)
ei

√
2ξ2e−qk eπ(y−pk)�(−i(y − pk)) ei/

√
2(ξ̄ ′

1−ξ̄ ′
2)e

qk
. (78)

This equation demonstrates that the kernel ofM(1)(x)M(2)(y) does not depend on the variable
ξ1 and for calculation ofQ(1)(x)Q(2)(y) the dependence of (78) on the variable ξ̄ ′

1 is irrelevant
because the integration over ξ ′, ξ̄ ′ in (63) results in deleting ξ̄ ′

1 from (78). In such a way for the
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calculation of Q(1)(x)Q(2)(y) we can use instead of M(12)
k (x, y, ξ1, ξ2, ξ̄

′
1, ξ̄

′
2) the following

reduced object:

M̃
(12)
k (x, y, ξ, ξ̄ ′) = e−π(x+y)/2e−i/

√
2ξ̄ ′eqk

× 1

�(−i(x − pk) + 1)
ei

√
2ξe−qk eπ(y−pk)�(−i(y − pk)) e−i/

√
2ξ̄ ′eqk . (79)

Note that M̃(12)(x, y) is nothing else but the kernel of M(1)(x)M(2)(y) on the space
π
(
�(1) ×�(2)). Now let us expand the exponents which contain ξ, ξ̄ on the right-hand side of

(79) and move all the factors depending on pk to the right:

M̃
(12)
k (x, y, ξ, ξ̄ ′) = e−π(x+y)

∑
n,m=0

(i
√

2ξ)n

n!
(−iξ̄ ′/

√
2)me(m−n)qk

×
m∑
l=0

(−1)m−l

l!(m− l)!
�(−i(y − pk)−m + l)

�(−i(x − pk) + 1 + n−m + l)
eπ(y−pk). (80)

The summation over l in (80) gives
m∑
l=0

(−1)m−l

l!(m− l)!
�(−i(y − pk)−m + l)

�(−i(x − pk) + 1 + n−m + l)

= (−1)m

m!

�(−i(y − pk)−m)
�(−i(x − pk) + n + 1)

�(−i(x − y) +m + n + 1)

�(−i(x − y) + n + 1)
(81)

and we arrive at the following expression for M̃(12)
k (x, y, ξ, ξ̄ ′):

M̃
(12)
k (x, y, ξ, ξ̄ ′) = e−π(x+y)

∑
n,m=0

(i
√

2ξ)n

n!

(iξ̄ ′/
√

2)m

m!
e(m−n)qk

× �(−i(y − pk)−m)
�(−i(x − pk) + n + 1)

�(−i(x − y) +m + n + 1)

�(−i(x − y) + n + 1)
eπ(y−pk). (82)

Now let x and y be

x = z+ = z + i(l + 1
2 ) y = z− = z− i(l + 1

2 ) (83)

where l is an integer (half-integer). For these values of spectral parameters (82) takes the
following form:

M̃
(12)
k (z+, z−, ξ, ξ̄ ′) = e−πz ∑

n,m=0

(i
√

2ξ)n

n!

(iξ̄ ′/
√

2)m

m!
e(m−n)qk

× �(−i(z− − pk)−m)
�(−i(z+ − pk) + n + 1)

�(2l +m + n + 2)

�(2l + n + 2)
eπ(z−−pk). (84)

Furthermore, we need to consider (82) for the opposite shift of spectral parameters

x = z− − iε y = z+ + iε. (85)

We have introduced infinitesimal ε in (85) to remove an ambiguity which arises in (82) for
these x and y:

M̃
(12)
k (z−, z+, ξ, ξ̄

′) = e−πz ∑
n,m=0

(i
√

2ξ)n

n!

(iξ̄ ′/
√

2)m

m!
e(m−n)qk

× �(−i(z+ − pk)−m)
�(−i(z− − pk) + n + l)

�(−2l − 2ε +m + n)

�(−2l − 2ε + n)
eπ(z+−pk). (86)
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For ε → 0 the fraction of �-functions in (86) takes the following values:

lim
ε→0

�(−2l − 2ε +m + n)

�(−2l − 2ε + n)
=




�(−2l +m + n)

�(−2l + n)
n,m � 2l + 1

(−1)m
(2l − n)!

(2l − n−m)! 2l � n +m � 0

�(n +m− 2l)

�(n− 2l)
n � 2l � m

0 otherwise.

(87)

Apparently, the vanishing of (87) in the fourth region manifests the triangularity of the operator
M̃
(12)
k (z−, z+), therefore for the calculation of the trace of the product over k of these operators

we need to consider only the part of (87), which corresponds to the first two regions. Thus,
the resulting expression for the twice-reduced operator has the following form:

˜̃M(12)
k (z−, z+, ξ, ξ̄

′) = Ak(z, l, ξ, ξ̄ ′) + Bk(z, l, ξ, ξ̄
′) (88)

where A contains the part of the right-hand side of (86) with the summation over n,m in the
region n,m � 2l + 1, B contains the summation over n,m in the region 2l � n + m � 0.
In other words, the degrees of ξ, ξ̄ ′ in A and B have no intersection and therefore for the
calculation of the productQ(1)(z−)Q(2)(z+) these two parts will multiply coherently:

Q(1)(z−)Q(2)(z+) =
∫ N∏

k=1

dµ(ξk) ˜̃M(12)
N (z−, z+, ξ1, ξ̄N )

× ˜̃M(12)
N−1(z−, z+, ξN , ξ̄N−1) · · · ˜̃M(12)

1 (z−, z+, ξ2, ξ̄
′
1)

=
∫ N∏

k=1

dµ(ξk)AN(z, l, ξ1, ξ̄N )AN−1(z, l, ξN , ξ̄N−1) · · ·A1(z, l, ξ2, ξ̄1)

+
∫ N∏

k=1

dµ(ξk) BN(z, l, ξ1, ξ̄N )BN−1(z, l, ξN , ξ̄N−1) · · ·B1(z, l, ξ2, ξ̄1). (89)

Let us consider first A. For convenience we will shift the values of n,m by 2l + 1, then

Ak(z, l, ξ, ξ̄ ) = (ξ ξ̄ ′)2l+1e−πz ∑
n,m=0

(i
√

2ξ)n

n!

(iξ̄ ′/
√

2)m

(m + 2l + 1)!
e(m−n)qk

× �(−i(z− − pk)−m)
�(−i(z+ − pk) + n + l)

�(2l +m + n + 2)

�(2l + n + 2)
eπ(z−−pk). (90)

Comparing (90) with (84), we see that they differ from each other by the factor (ξ ξ̄ ′)2l+1 and
the shift of the factorialm!. This difference may be presented as an appropriate transformation
of M̃(12)

k (z+, z−, ξ, ξ̄ ′):

Ak(z, l, ξ, ξ̄
′) =

∫
dµ(ζ ) dµ(ζ ′) gl(ξ, ζ̄ )M̃

(12)
k (z+, z−, ζ, ζ̄ ′)fl(ζ ′, ξ̄ ′) (91)

where

gl(ξ, ζ̄ ) = (ξ)2l+1eξ ζ̄ fl(ζ, ξ̄ ) = (ξ̄ )2l+1
∑
n=0

(ζ ξ̄ )n

(n + 2l + 1)!
. (92)

These two functions possess the following property:∫
dµ(ξ)fl(ζ, ξ̄ )gl(ξ, ζ̄

′) = eζ ζ̄
′
. (93)
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The right-hand side of (93) is the δ-function in the holomorphic representation. However, note
that ∫

dµ(ξ)gl(ζ, ξ̄ )fl(ξ, ζ̄
′) =

∑
n=2l+1

(ζ ζ̄ ′)n

n!
. (94)

Taking into account (93), we immediately obtain∫ N∏
k=1

dµ(ξk)AN(z, l, ξ1, ξ̄N )AN−1(z, l, ξN , ξ̄N−1) · · ·A1(z, l, ξ2, ξ̄1) = Q(1)(z+)Q
(2)(z−).

(95)

Our next step is the consideration of theB part ofM(12)(z−, z+). First of all we shall remove the√
2 from its holomorphic arguments, because in the integral (89) these factors will cancelled

out. Therefore, we need to consider the following expression for B:

Bk(z, l, ξ, ξ̄
′) = e−πz

2l∑
t=0

t∑
m=0

ξ t−m

(t −m)!
ξ̄ ′m

m!
(−1)mit+2l+1e(2m−t)qk

× (2l +m− t)!
(2l − t)!

�(−i(z− pk) + l −m + 1
2 )

�(−i(z− pk)− l + t −m + l/2)
eπ(z−pk). (96)

We intend to compare this operator with the Lax operator Llk(x) of the Toda chain with the
auxiliary space corresponding to the spin l. As follows from the results of section 2, Llk(x)
could be obtained by the reduction of the operator mk(x) defined in (29) to the subspace
corresponding to spin l. In the holomorphic representation the kernel of Llk(x) could be easily
found using the projection:

Llk(x, α, β̄) = mk(x − i(l + 1
2 ))

(αβ̄)2l

�(2l + 1)
. (97)

(Note that here we again use two-component variables αi, βi, i = 1, 2.) In (97) the operator
mk(x) should be understood as the differential operator, acting on the projection kernel (αβ̄)2l

�(2l+1) .
For the calculation of the right-hand side of (97) recall that the operator exponential function
in (29) is well defined because

[i(p − x) + l3, ρ
+
1ρ2eq] = [i(p − x) + l3, ρ

+
2ρ1e−q] = 0 (98)

therefore we can expand the exponential function into a formal series and find the action of
each term on the projection kernel:

mk(x − i(l + 1
2 ))

(αβ̄)2l

�(2l + 1)
=

∞∑
n=0

(−1)n�(i(pk − x) + ρ+
1ρ1 − l + 1

2 )

�(i(pk − x) + ρ+
1ρ1 − l − n + 1

2 )

(iρ+
1ρ2eqk )n

n!

× (α1β̄2eqk − α2β̄1e−qk )2l

�(2l + 1)
. (99)

Apparently, only 2l terms in (99) will survive because the differential operator (ρ2)
n acts on

the polynomial. The result has the following form:

Llk(x, α, β̄) =
2l∑
t=0

t∑
m=0

e(2m−t)qk �(−i(x − pk)−m + l + 1
2 )

�(−i(x − pk)−m + t − l + 1
2 )

×(−1)mi2l+t α
2l−t+m
1 αt−m2 β̄2l−m

1 β̄m2

(2l − t)!(t −m)!m!
. (100)
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This L-operator defines the transfer matrix of the Toda chain with an auxiliary space and
corresponding spin l:

t l(x) =
∫ N∏

k=1

d2µ(αk)L
l
N(x, α1, ᾱN )L

l
N−1(x, αN, ᾱN−1) · · ·Ll1(x, α2, ᾱ1). (101)

If in this formula we perform the integration over one pair of holomorphic variables,
corresponding, for example, to α1, β̄1 in (100), the integrand will still be presented in a
factorized form, but with a new, reduced kernel of the L-operator:

L̃lk(x, α, β̄) =
2l∑
t=0

t∑
m=0

e(2m−t)qk �(−i(x − pk)−m + l + 1
2 )

�(−i(x − pk)−m + t − l + 1
2 )

×(−1)mi2l+t αt−m2 β̄m2

(2l − t)!(t −m)!m!
(2l − t +m)!. (102)

Comparing (102) with (96) we find that

Bk(z, l, ξ, ξ̄
′) = L̃lk(z, ξ, ξ̄ ) i e−πpk . (103)

Therefore,∫ N∏
k=1

dµ (ξk)BN(z, l, ξ1, ξ̄N )BN−1(z, l, ξN , ξ̄N−1) · · ·B1(z, l, ξ2, ξ̄1) = iNt l(x)e−πP (104)

where

P =
N∑
k=0

pk (105)

is the integral of motion, which commutes with t l(x). In the derivation of (104) we have moved
all the factors e−πpk to the right to form e−πP . Gathering together (89), (95) and (104) we
obtain the following functional relations:

Q(1)(z− i(l + 1
2 ))Q

(2)(z + i(l + 1
2 ))−Q(1)(z + i(l + 1

2 ))Q
(2)(z− i(l + 1

2 )) = iNt l(x)e−πP .
(106)

For l = 0 the transfer matrix turns into 1 and we have the simplest Wronskian relation:

Q(1)(z− 1
2 i)Q(2)(z + 1

2 i)−Q(1)(z + 1
2 i)Q(2)(z− 1

2 i) = iNe−πP . (107)

For the illustration of this identity the reader can use the Q(i)-operators for one degree of
freedom (47) and (48). In this simplest case (107) reduces to the well known identity for
Bessel functions:

Iν(z)I−ν+1(z)− I−ν(z)Iν−1(z) = −2 sin(πν)

πz
. (108)

The general case (106) for one degree on freedom is related to Lommel polynomials [8].
The functional relations of the type (106) were first established for a certain field-

theoretical model in [2]. In the recent paper of the author with Stroganov [9] we have
discussed the analogous relation for the eigenvalues ofQ-operators in the case of an isotropic
Heisenberg spin chain. Originally, since the Baxter paper [1] the existence of oneQ-operator
was considered as important alternative for the Bethe ansatz. The relations (106) show the
importance of the second Q-operator, which together with the first one give rise to numerous
fusion relations (see, e.g., [2, 9]).
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6. Discussion

The approach we have considered in the present paper could also be applied to the other with
the rationalR-matrix, the discrete self-trapping (DST) model, considered in [3]. The quantum
determinant of the Lax operator for this model is not unity and the Baxter equation has the
following form:

t (x)Q(x) = (x − 1
2 i)NQ(x − i) +Q(x + i). (109)

The general properties of the Q-operators for the DST model are similar to that of the Toda
system. The eigenvalues of one Q-operator are polynomial in the spectrum parameter, while
the eigenvalues of the second one are meromorphic functions. In the case of the Toda system
the eigenvalues of Q(1)(x) are entire functions, the eigenvalues of Q(2)(x) are meromorphic.
For the DST model there also exist functional relations similar to (106).

The most interesting would be the application of the formalism to the case of the XXX-spin
chain. The situation here is the following. In [4] we have constructed the family of Q(x, l)-
operators similar to (31). Moreover, from the results of [9] it follows that for an XXX-spin
chain there exist basic Q-operators. Making use of the formalism of section 3, it is possible
to the find theM(i)

k (x)-operators for this case, but the trace of monodromies corresponding to
M
(i)
k (x) diverges. This puzzle deserves further investigation.

Another interesting point we want to discuss is the relation of ourM(i)
k (x)-operators with

the quantum linear problem for the Lax operator (5). In the classical case the linear problem is
the main ingredient of the inverse scattering method, at the same time for the quantum theory it
seems to be unnecessary (see, for example, the excellent review on the subject [10]). However,
let us consider the following problem:

ψn+1(x) = Ln(x)ψn(x) (110)

where Ln(x) is given in (5) and ψn is a two-component quantum operator. From the
multiplication rules (43) we obtain

(Ln(x))ijM
(1)
n (x)

(
1
ρ

)
j

=
(

1
ρ

)
i

M(1)
n (x − i). (111)

Now let us define the operator

(
ψ(1)n

)
i
(x) = Tr

(
N∏
k=n
M
(1)
k (x)

(
1
ρ

)
i

n−1∏
k=1

M
(1)
k (x − i)

)
(112)

where the trace is taken over the auxiliary space. Apparently, due to (111) the operator (112)
does satisfy equation (110). For n = 1, the solution has the following form:

(
ψ
(1)
1

)
i
(x) = Tr

(
N∏
k=1

M
(1)
k (x)

(
1
ρ

)
i

)
= Q(1)(x)

(
1

ieqN

)
i

(113)

where in the last step we have used the explicit form of theQ(1)(x)-operator for the calculation
of the trace. On the other hand, the solution (113) translated to the periodN by the monodromy
(8), due to (111) is given by

(
ψ
(1)
N+1

)
i
(x) = Tr

((
1
ρ

)
i

N∏
k=1

M
(1)
k (x − i)

)
= Q(1)(x − i)

(
1

ieqN

)
i

. (114)

In other words, we obtain

Tij (x)
(
ψ
(1)
1

)
j
(x) = Q(1)(x − i)

Q(1)(x)

(
ψ
(1)
1

)
i
(x). (115)
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This equation may be understood as the quantum analogue of the property of Bloch solutions,
which are eigenvectors of the translation to the period.

Similarly, we can consider the second solution. Indeed, from the multiplications rules
(43) for theM(2)

n (x) we obtain

(Ln(x))ijM
(2)
n (x)

( −ρ+

1

)
j

=
( −ρ+

1

)
i

M(2)
n (x − i). (116)

Therefore, the operator

(
ψ(2)n

)
i
(x) = Tr

(
N∏
k=n
M
(2)
k (x)

( −ρ+

1

)
i

n−1∏
k=1

M
(2)
k (x − i)

)
(117)

possesses the same properties as (112). The initial value of (117) is given by

(
ψ
(2)
1

)
i
(x) = Tr

(
N∏
k=1

M
(2)
k (x)

( −ρ+

1

)
i

)
= Q(2)(x)

( −ieq1

1

)
i

(118)

where again on the last step we have used the explicit form ofM(2)(x). As above we obtain

Tij (x)
(
ψ
(2)
1

)
j
(x) = Q(2)(x − i)

Q(2)(x)

(
ψ
(2)
1

)
i
(x). (119)

In such a way usingM(i)
n (x)-operators we succeeded in the construction of the operators which

may be interpreted as the quantum analogues of the Bloch functions of the corresponding linear
problem. In the classical theory of finite-zone ‘potentials’, two Bloch solutions of the linear
problem, as functions of the spectral parameter are actually projections of the Backer–Akhiezer
function, which is the single-valued meromorphic function on a hyper-elliptic surface. In the
quantum case the Bloch functions (112) and (117) do not possess the branching points (in a
weak sense) which is the trace of the projection in the classical case, therefore their intimate
relation is somehow hidden and it will be very interesting to uncover this relationship.
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